Shape controlled interpolatory ternary subdivision
نویسندگان
چکیده
منابع مشابه
Shape controlled interpolatory ternary subdivision
Ternary subdivision schemes compare favorably with their binary analogues because they are able to generate limit functions with the same (or higher) smoothness but smaller support. In this work we consider the two issues of local tension control and conics reproduction in univariate interpolating ternary refinements. We show that both these features can be included in a unique interpolating 4-...
متن کاملTernary interpolatory Subdivision Schemes Originated from splines
A generic technique for construction of ternary interpolatory subdivision schemes, which is based on polynomial and discrete splines, is presented. These schemes have rational symbols. The symbols are explicitly presented in the paper. This is accompanied by a detailed description of the design of the refinement masks and by algorithms that verify the convergence of these schemes. In addition, ...
متن کاملA Controllable Ternary Interpolatory Subdivision Scheme
A non-uniform 3-point ternary interpolatory subdivision scheme with variable subdivision weights is introduced. Its support is computed. The C and C convergence analysis are presented. To elevate its controllability, a modified edition is proposed. For every initial control point on the initial control polygon a shape weight is introduced. These weights can be used to control the shape of the c...
متن کاملShape Preserving C2 Interpolatory Subdivision Schemes
Stationary interpolatory subdivision schemes which preserve shape properties such as convexity or monotonicity are constructed. The schemes are rational in the data and generate limit functions that are at least C 2. The emphasis is on a class of six-point convexity preserving subdivision schemes that generate C 2 limit functions. In addition, a class of six-point monotonicity preserving scheme...
متن کاملInterpolatory Subdivision Curves with Local Shape Control
In this paper we present a novel subdivision scheme that can produce a nice-looking interpolation of the control points of the initial polyline, giving the possibility of adjusting the local shape of the limit curve by choosing a set of tension parameters associated with the polyline edges. If compared with the other existing methods, the proposed model is the only one that allows to exactly re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics and Computation
سال: 2009
ISSN: 0096-3003
DOI: 10.1016/j.amc.2009.06.014